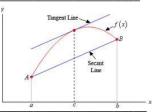
2020 AP CALCULUS AB FORMULA LIST

Definition of the derivative: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \qquad f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x-a} \quad \text{(Alternative form)}$

Definition of continuity: f is continuous at c if and only if 1) f(c) is defined; 2) $\lim_{x \to c} f(x)$ exists; 3) $\lim_{x \to c} f(x) = f(c)$.

Mean Value Theorem: If f is continuous on [a, b] and differentiable on (a, b), then there exists a number c on (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.



Intermediate Value Theorem: If f is continuous on [a, b] and k is any number between f(a) and f(b), then there is at least one number c between a and b such that f(c) = k.

$\frac{d}{dx} \left[x^n \right] = nx^{n-1}$	$\frac{d}{dx} \left[\sqrt{u} \right] = \frac{\frac{du}{dx}}{2\sqrt{u}}$	$\frac{d}{dx} \left[\frac{1}{x} \right] = -\frac{1}{x^2}$
$\frac{d}{dx}\left[f(x)g(x)\right] = f(x)g'(x)$	x)+g(x)f'(x)	$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$
$\frac{d}{dx}(f(g(x))) = f'(g(x)).$	g'(x)	
$\frac{d}{dx}[\sin u] = \cos u \frac{du}{dx}$		$\frac{d}{dx}[\cos u] = -\sin u \frac{du}{dx}$
$\frac{d}{dx}[\tan u] = \sec^2 u \frac{du}{dx}$		$\frac{d}{dx}[\cot u] = -\csc^2 u \frac{du}{dx}$
$\frac{d}{dx}[\sec u] = \sec u \tan u \frac{du}{dx}$		$\frac{d}{dx}[\csc u] = -\csc u \cot u \frac{du}{dx}$
$\frac{d}{dx}[\ln u] = \frac{1}{u}\frac{du}{dx}$		$\frac{d}{dx}[\log_a u] = \frac{1}{u\ln a} \frac{du}{dx}$
$\frac{d}{dx}[e^u] = e^u \frac{du}{dx}$		$\frac{d}{dx}[a^u] = a^u \ln a \frac{du}{dx}$
$\frac{d}{dx}[\arcsin u] = \frac{1}{\sqrt{1 - u^2}} \frac{du}{dx}$		$\frac{d}{dx}[\arccos u] = -\frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$
$\frac{d}{dx}[\arctan u] = \frac{1}{1+u^2} \frac{du}{dx}$		$\frac{d}{dx}[\operatorname{arc}\operatorname{cot} u] = -\frac{1}{1+u^2}\frac{du}{dx}$

Definition of a definite integral: $\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{k=1}^{n} f(x_{k}) \cdot (\Delta x_{k}) = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}) \cdot (\Delta x_{k})$

$$\int \cos u \, du = \sin u + C \qquad \qquad \int \sin u \, du = -\cos u + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1 \qquad \qquad \int \frac{1}{u} \, du = \ln |u| + C$$

$$\int e^u du = e^u + C \qquad \qquad \int a^u du = \frac{a^u}{\ln a} + C$$

$$\int f'(g(x)) \cdot g'(x) dx = f(g(x)) + C$$

Definition of a Critical Number:

Let f be defined at c. If f'(c) = 0 or if f' is undefined at c, then c is a critical number of f.

First Derivative Test:

Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then f(c) can be classified:

- 1) If f'(x) changes from negative to positive at c, then (c, f(c)) is a relative minimum of f.
- 2) If f'(x) changes from positive to negative at c, then (c, f(c)) is a relative maximum of f.

Second Derivative Test:

Let f be a function such that the second derivative of f exists on an open interval containing c.

1) If f'(c) = 0 and f''(c) > 0, then (c, f(c)) is a relative minimum.

2) If f'(c) = 0 and f''(c) < 0, then (c, f(c)) is a relative maximum

Definition of Concavity:

Let f be differentiable on an open interval I. The graph of f is **concave upward** on I if f' is increasing on the interval and **concave downward** on I if f' is decreasing on the interval.

Test for Concavity:

Let f be a function whose second derivative exists on an open interval I. 1) If f''(x) > 0 for all x in L then the small of f is concerned in

1) If f''(x) > 0 for all x in *I*, then the graph of f is concave upward in *I*.

2) If f''(x) < 0 for all x in *I*, then the graph of f is concave downward in *I*.

Definition of an Inflection Point:

A function f has an inflection point at (c, f(c))

- 1) if f''(c) = 0 or f''(c) does not exist <u>and</u>
- 2) if f'' changes sign from positive to negative or negative to positive at x = c
 - <u>**OR**</u> if f'(x) changes from increasing to decreasing or decreasing to increasing at x = c.

First Fundamental Theorem of Calculus: $\int_{a}^{b} f'(x) dx = f(b) - f(a)$ $f(b) = f(a) + \int_{a}^{b} f'(x) dx \qquad \text{final = initial + change}$ $f(a) = f(b) - \int_{a}^{b} f'(x) dx \qquad \text{initial = final - change}$

Second Fundamental Theorem of Calculus:

$$\frac{d}{dx}\int_{a}^{x} f(t)dt = f(x)$$
$$\frac{d}{dx}\int_{a}^{g(x)} f(t)dt = f(g(x)) \cdot g'(x)$$

Chain Rule Version:

Average rate of change of f(x) on [a, b]: $\frac{f(b)}{b}$

$$\frac{f(b)-f(a)}{b-a}$$

Average value of
$$f(x)$$
 on $[a, b]$: $f_{AVE} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$

Particle Motion

If an object moves along a straight line with position function s(t), then its

Velocity is v(t) = s'(t) Speed = |v(t)| Acceleration is a(t) = v'(t) = s''(t)

Displacement (change in position) from x = a to x = b is **Displacement** = $\int_{a}^{b} v(t) dt$

Total Distance traveled from x = a to x = b is **Total Distance** = $\int_{a}^{b} |v(t)| dt$

At rest means v(t) = 0.

An object is moving left (down) when v(t) < 0 and an object is moving right (up) when v(t) > 0.

An object changes direction when velocity changes signs.

An object is speeding up when velocity and acceleration have the same sign.

An object is slowing down when velocity and acceleration have different signs.

Rate In/Rate Out

 $\int_{a}^{b} (\text{rate of change}) dt = \text{amount of change from } t = a \text{ to } t = b$ A(t) = initial amount + amount in - amount out $A(t) = \text{ initial amount + } \int_{0}^{t} (\text{rate in}) dt - \int_{0}^{t} (\text{rate out}) dt$ $\frac{d}{dt} (\text{amount}) = \text{rate}$

If rate in > rate out, then amount is increasing If rate out > rate in, then amount is decreasing When finding abs max and/or abs max, use candidates test. To find critical values: rate in = rate out.

L'Hospital's Rule:

Suppose that f and g are differentiable functions and that $g'(x) \neq 0$ near x = a and

 $\lim_{x \to a} f(x) = 0 \text{ and } \lim_{x \to a} g(x) = 0 \text{ or that } \lim_{x \to a} f(x) = \pm \infty \text{ and } \lim_{x \to a} g(x) = \pm \infty$

Then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

